National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Study of cooperative dislocation phenomena in solids by the acoustic emission technique
Knapek, Michal ; Chmelík, František (advisor) ; Haušild, Petr (referee) ; Landa, Michal (referee)
Title: Study of cooperative dislocation phenomena in solids by the acoustic emis- sion technique Author: Michal KNAPEK Department: Department of Physics of Materials Supervisor: doc. RNDr. František Chmelík, CSc., Department of Physics of Materials Abstract: Plastic deformation of micron-scale crystalline materials differs con- siderably from bulk specimens, as it is characterized by random strain bursts. Three categories of metallic samples were investigated in this thesis: micron- scale copper micropillars with varied geometries, submillimeter-scale aluminum microwires, and aluminum and aluminum-magnesium salt-replicated foams. Very precise fabrication methods and sensitive measurement set-ups consisting of uni- axial compression and tensile tests with concurrent acoustic emission (AE) record- ing were developed. These fine methods allowed for investigations of effects re- lated to plastic deformation at micrometer scales, i.e. the dislocation dynamics associated with the stress drops. Size effects in plastic deformation, as well as clear correlations between the stress drops and the AE events, were found in mi- crosamples, confirming that dislocation avalanches are indeed responsible for the stochastic character of deformation processes also at microscales. Open-cell pure aluminum and aluminum-magnesium...
Study of cooperative dislocation phenomena in solids by the acoustic emission technique
Knapek, Michal ; Chmelík, František (advisor)
Title: Study of cooperative dislocation phenomena in solids by the acoustic emis- sion technique Author: Michal KNAPEK Department: Department of Physics of Materials Supervisor: doc. RNDr. František Chmelík, CSc., Department of Physics of Materials Abstract: Plastic deformation of micron-scale crystalline materials differs con- siderably from bulk specimens, as it is characterized by random strain bursts. Three categories of metallic samples were investigated in this thesis: micron- scale copper micropillars with varied geometries, submillimeter-scale aluminum microwires, and aluminum and aluminum-magnesium salt-replicated foams. Very precise fabrication methods and sensitive measurement set-ups consisting of uni- axial compression and tensile tests with concurrent acoustic emission (AE) record- ing were developed. These fine methods allowed for investigations of effects re- lated to plastic deformation at micrometer scales, i.e. the dislocation dynamics associated with the stress drops. Size effects in plastic deformation, as well as clear correlations between the stress drops and the AE events, were found in mi- crosamples, confirming that dislocation avalanches are indeed responsible for the stochastic character of deformation processes also at microscales. Open-cell pure aluminum and aluminum-magnesium...
Study of cooperative dislocation phenomena in solids by the acoustic emission technique
Knapek, Michal ; Chmelík, František (advisor) ; Haušild, Petr (referee) ; Landa, Michal (referee)
Title: Study of cooperative dislocation phenomena in solids by the acoustic emis- sion technique Author: Michal KNAPEK Department: Department of Physics of Materials Supervisor: doc. RNDr. František Chmelík, CSc., Department of Physics of Materials Abstract: Plastic deformation of micron-scale crystalline materials differs con- siderably from bulk specimens, as it is characterized by random strain bursts. Three categories of metallic samples were investigated in this thesis: micron- scale copper micropillars with varied geometries, submillimeter-scale aluminum microwires, and aluminum and aluminum-magnesium salt-replicated foams. Very precise fabrication methods and sensitive measurement set-ups consisting of uni- axial compression and tensile tests with concurrent acoustic emission (AE) record- ing were developed. These fine methods allowed for investigations of effects re- lated to plastic deformation at micrometer scales, i.e. the dislocation dynamics associated with the stress drops. Size effects in plastic deformation, as well as clear correlations between the stress drops and the AE events, were found in mi- crosamples, confirming that dislocation avalanches are indeed responsible for the stochastic character of deformation processes also at microscales. Open-cell pure aluminum and aluminum-magnesium...
Study of cooperative dislocation phenomena in solids by the acoustic emission technique
Knapek, Michal ; Chmelík, František (advisor)
Title: Study of cooperative dislocation phenomena in solids by the acoustic emis- sion technique Author: Michal KNAPEK Department: Department of Physics of Materials Supervisor: doc. RNDr. František Chmelík, CSc., Department of Physics of Materials Abstract: Plastic deformation of micron-scale crystalline materials differs con- siderably from bulk specimens, as it is characterized by random strain bursts. Three categories of metallic samples were investigated in this thesis: micron- scale copper micropillars with varied geometries, submillimeter-scale aluminum microwires, and aluminum and aluminum-magnesium salt-replicated foams. Very precise fabrication methods and sensitive measurement set-ups consisting of uni- axial compression and tensile tests with concurrent acoustic emission (AE) record- ing were developed. These fine methods allowed for investigations of effects re- lated to plastic deformation at micrometer scales, i.e. the dislocation dynamics associated with the stress drops. Size effects in plastic deformation, as well as clear correlations between the stress drops and the AE events, were found in mi- crosamples, confirming that dislocation avalanches are indeed responsible for the stochastic character of deformation processes also at microscales. Open-cell pure aluminum and aluminum-magnesium...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.